The lab addresses a variety of topics that, at first glance, may look disparate. Yet, there is a common denominator, namely the manifold consequences of the fact that we dispose of motricity — motricity, arguably the ultimate reason for the development of brains. We are interested in the question of how our brain is able to plan and to execute optimal goal-directed movements and how sensory systems are able to deal with the influence of movement on the sensory signals, ensuring movement independent percepts. And we deal with the information we take from the movements made by others in order to understand their needs and intentions, allowing us to select appropriate behavioral responses. And whatever perspective we take on movement, we always try to understand what it means to suffer from disturbances of the systems involved.
Trying to unravel the underpinnings of social interactions
In order to interact successfully with others we have to develop a theory of mind (TOM), a concept of the other’s interests, desires and goals. Exploiting non-verbal information offered by the other’s body is a key step in developing a TOM: The gaze of the other allows us to identify her/his objects of attention, to establish joint attention and to project our own object-associated needs and aspirations onto the other one. Additional information on the needs of the other is provided by the actions directed at these objects of joint attention.
Both disturbances of gaze following and of action understanding have been suggested to underlie human autism. The term ASD (autism spectrum disorder) or simply autism tries to embrace a continuum of developmental disturbances, which lead to impaired social interaction and communication skills, the inability to establish normal relationships, reduced language skills, repetitive and stereotypic behaviors, in many cases to intellectual disability and a large variability of possible complicating secondary symptoms. Asperger syndrome and high functioning autism, terms which are often used synonymously, can be understood as mild variants of autism in which disturbances of social skills may come with no or little deficits in other domains and gradual transition to a normal personality with distinct traits. Subjects with autism lack spontaneous eye-gaze following under natural conditions. As gaze following and joint attention based on it are major building blocks of a viable TOM, this gaze following alteration could easily explain the unavailability of a normal TOM in autism. However, subjects with autism, at least the older ones, are able to shift attention based on eye-gaze cues and they may exhibit even faster orienting guided by eye gaze. In collaboration with the Tübingen Department of Psychiatry we have launched psychophysical and BOLD-imaging studies of adult patients suffering from high functioning autism in order to test specific hypotheses suggested by our recent psychophysical work on monkeys and healthy human subjects.
Motricity-invariant visual perception
We dispose of motricity, allowing us to explore the world and to influence the world. The downside of motricity is its pervasive influence on sensation. It forces our brains to deal with the question if sensory signals are a consequence of motricity or, alternatively, a result of an event in the world. Only the latter is ecologically relevant and therefore should lead to a veridical percept. Our work, has provided compelling evidence that our ability to perceive visual motion as it unfolds in the external world is a consequence of the fact that we are able to generate a reliable prediction of the expected visual motion consequences of our eye movements, subtracted from the visual motion input as seen by the eyes. We could show that this prediction is contributed by the cerebellum, continuously fine tuning a first, crude sketch of the necessary prediction provided by supplementary motor cortex. The early stages of the cortical processing of visual motion are ignorant of the source of visual motion being external or due to the eye movement. The optimized prediction coming from the cerebellum enters the cortical motion hierarchy only at the level of the newly discovered area VPS in the caudal lateral fissure, where motion in the external world is extracted, taking the predicted motion consequences of the eye movements, coming from the cerebellum into account. Lesions of this region and in general, a dysfunction of this inferential mechanism is - as we could show — a major cause of dizziness.
In our most recent work, we have turned to the related problem of orientation stability, our ability to perceive the visual world to be upright, although tilting the head relative to the gravitational vector may cause substantial tilting of the retinal image.
Cerebellar Control of Movement
The core symptom of cerebellar disease is ataxia, the inability to carry out movements precisely and reliably. The pathophysiology of ataxia, or dysmetria, has as yet escaped proper understanding. This is a direct consequence of the many unanswered questions on the normal physiology and function of the cerebellum Neurology has seen numerous attempts to mitigate cerebellar ataxia and related problems. Whereas the usually poorly justified pharmaceutical approaches were bound to fail, rehabilitation training has time and again shown to be beneficial, in particular, when insights on the specifics of cerebellum based motor learning were taken into account. However, the potential of rehabilitation training is limited. If we strive for more substantial therapeutic options, we will have to better understand the normal working of this neuronal machine. This need will have to be met, independent of whether we dream of replacing the lost machine by technical means, i.e. a cerebellar prosthesis, or by regenerating circuits using cell biological approaches. Whichever of these two science fiction approaches may one day materialize, it will have to reflect the blueprint of the normal neuronal machine. We have worked on this blueprint for many years, in the early years focusing on the pontine nuclei, the major interface between cerebral cortex and the cerebellum.
2023
Breu MS, Ramezanpour H, Dicke PW, Thier P (2023) A frontoparietal network for volitional control of gaze following. Eur J Neurosci 57(10):1723-1735. doi: 10.1111/ejn.15975. Epub 2023 Apr 3.
Chong I, Ramezanpour H, Thier P (2023) Causal manipulation of gaze-following in the macaque temporal cortex. Prog Neurobiol 226:102466. doi: 10.1016/j.pneurobio.2023.102466. Epub 2023 May 20.
Khazali MF, Daddaoua N, Thier P (2023) Nonhuman primates exploit the prior assumption that the visual world is vertical. J Neurophysiol 130(5):1252-1264. doi: 10.1152/jn.00514.2022. Epub 2023 Oct 12.PMID: 37823212
Markanday A, Hong S, Inoue J, De Schutter E, Thier P (2023) Multidimensional cerebellar computations for flexible kinematic control of movements. Nat Commun 14(1):2548. doi: 10.1038/s41467-023-37981-0. PMID: 37137897
Pomper JK, Shams M, Wen S, Bunjes F, Thier P (2023) Non-shared coding of observed and executed actions prevails in macaque ventral premotor mirror neurons. Elife 12:e77513. doi: 10.7554/eLife.77513.PMID: 37458338
Shams M, Thier P, Lomber SG, Merrikhi Y (2023) Resilience of FEF neuronal saccade code to V4 perturbations. J Neurophysiol 130(5):1243-1251. doi: 10.1152/jn.00056.2023. Epub 2023 Oct 18.PMID: 37850785
2022
Barash S, Spivak O, Thier P (2022) The scotopic band: primate detailed scotopic vision and perceptual incertainty. BioRxiv 2022.01.25.477659; doi: doi.org/10.1101/2022. 01.25.477659
Khazali M, Daddaoua N, Thier P (2022) Nonhuman primates exploit the prior assumption that the visual world is vertical. BioRxiv 2022.10.28.514095; doi: doi.org/10.1101/2022.10.28.514095
Markanday A, Inoue J, Vialkowitsch P, Thier P (2022) An interactive platform for detecting cerebellar complex spikes. J Neurophysiol 128 (2):434-435; doi: 10.1152/jn.00297.2022
Shams Ahmar M, Thier P, Merrikhi Y (2022). Dissociable roles of FEF neurons in initiating saccades. BioRxiv 2022.02.01.4786509; doi: doi.org/10.1101/2022. 02.01.478650
Spadacenta S, Dicke PW, Thier P (2022) A prosocial function of head-gaze aversion and head-cocking in common marmosets. Primates 63(5):535-546; doi: 10.1007/s10329-022-00997-z. Epub 2022 Jul 15.
Stettler M, Taubert N, Siebert R, Spadacenta S, Dicke P, Thier P, Giese M (2022) Norm-referenced neural mechanism for the recognition of facial expressions across fundamentally different face shapes. J Vis 22:, 3398; doj:https://doi.org/10.1167/jov.22.14.3398. Vision Sciences Society Annual Meeting Abstract.
Sun Z, Dicke PW, Thier P (2022) Differential kinematic encoding of saccades and smooth-pursuit eye movements by fastigial neurons. Neurosci Bull 38(8):927-932; doi: 10.1007/s12264-022-00857-2. Epub 2022 Apr 29.
2021
Ramezanpour H, Görner M, Thier P (2021) Variability of neuronal responses in the posterior superior temporal sulcus predicts choice behavior during social interactions. J Neurophysiol 126(6):1925-1933. doi: 10.1152/jn.00194.2021. Epub 2021 Oct 27. PMID: 34705592
Spivak O, Thier P, Barash S (2021) Dark-habituation increases the dark-background-contingent upshift of gaze in macaque monkeys. Vision Res 188:262-273. doi: 10.1016/j.visres.2021.07.011. Epub 2021 Sep 1. PMID: 34481167
Shams-Ahmar M, Thier P (2021) Sensitivity of express saccades to the expected value of the target. J Neurophysiol 125(1):238-247. doi: 10.1152/jn.00172.2020. Epub 2020 Dec 9. PMID: 33296613
Markanday A, Inoue J, Dicke PW, Thier P (2021) Cerebellar complex spikes multiplex complementary behavioral information. PLoS Biol 19(9):e3001400. doi: 10.1371/journal.pbio.3001400. eCollection 2021 Sep. PMID: 34529650 Free PMC article.
Taubert N, Stettler M, Siebert R, Spadacenta S, Sting L, Dicke P, Thier P, Giese MA (2021) Shape-invariant encoding of dynamic primate facial expressions in human perception. eLife;10:e61197. doi: 10.7554/eLife.61197. PMID: 34115584 Free PMC article.
Markanday A, Thier P (2021) The Quest for a Unifying Framework for the Role of Cerebellar Complex Spikes. In: Cerebellum as a CNS hub; Mizusawa H, Kakei S (eds). Contemporary Clinical Neuroscience Series, Springer Nature Switzerland, pp 277-304. ISBN 978-3-030-75816-5; ISBN 978-3-030-75817-2 (eBook)2020
2020
Görner M, Ramezanpour H, Chong I, Thier P (2020) Does the brain encode the gaze of others as beams emitted by their eyes? Proc Natl Acad Sci U S A 117(34):20375-20376. doi:10.1073/pnas.2012462117.
Khazali MF, Ramezanpour H, Thier P (2020) V1 neurons encode the perceptual compensation of false torsion arising from Listing's law. Proc Natl Acad Sci U S A. 117(31):18799-18809. doi:10.1073/pnas.2007644117.
Kraemer P, Görner M, Ramezanpour H, Dicke P, Thier P (2020) Frontal, parietal and temporal brain areas are differentially activated when disambiguating potential objects of joint attention. eNeuro 0437-19.2020. doi:10.1523/ENEURO.0437-19.2020.
Markanday A*, Bellet J*, Bellet ME, Inoue J, Hafed ZM**, Thier P** (2020) Using deep neural networks to detect complex spikes of cerebellar Purkinje cells. Journal of Neurophysiology 123:2217-2234. (*: contributed equally; **: co-corresponding authors)
Pomper JK, Spadacenta S, Bunjes F, Arnstein D†, Giese M, Thier P (2020) Representation of the observer’s predicted outcome value in mirror and nonmirror neurons of macaque F5 ventral premotor cortex. J Neurophysiol 124(3):941-961. doi: 10.1152/jn.00234.2020.
Ramezanpour H, Thier P (2020) Decoding of the other’s focus of attention by a temporal cortex module. Proc Natl Acad Sci USA 117(5):2663-2670. doi: 10.1073/pnas.1911269117.
Siebert R, Taubert N, Spadacenta S, Dicke PW, Giese MA, Thier P (2020) A naturalistic dynamic monkey head avatar elicits species-typical reactions and overcomes the uncanny valley. eNeuro.0524-19.2020.
Stettler M, Taubert N, Azizpour T, Siebert R, Spadacenta S, Dicke P, Thier P, Giese MA (2020) Physiologically-inspired neural circuits for the recognition of dynamic faces. In: ICANN 2020, Farkas et al. (eds.), Springer Nature Switzerland AG 2020?I., LNCS 12396, pp. 168–179; doi.org/10.1007/978-3-030-61609-0_14
2019
Flierman NA, Ignashchenkova A, Negrello M, Thier P, De Zeeuw CI, Badura A (2019) Glissades are altered by lesions to the oculomotor vermis but not by saccadic adaptation. Front Behav Neurosci. 13:194; doi: 10.3389/fnbeh.2019.00194. eCollection 2019.
Spadacenta S, Dicke PW, Thier P (2019) Reflexive gaze following in common marmoset monkeys. Scientific Reports 9(1):15292; doi: 10.1038/s41598-019-51783-9.
Stettler M, Taubert N, Sting L, Siebert R, Spadacenta S, Dicke P et al (2019) Cross-species differences
in the perception of dynamic facial expressions. Talk at ECVP Conference 2019, Perception 48(2S):63.
Taubert N, Stettler M, Sting L, Siebert R, Spadacenta S, Dicke P et al (2019) Cross-species differences
in the perception of dynamic facial expressions. VSS Annual Meeting 2019, Journal of Vision
19(10):155. doi: doi.org/10.1167/19.10.155
Thier P, Markanday A (2019) Role of the vermal cerebellum in visually guided eye movements and visual motion perception. Annu Rev Vis Sci 5:247-268; doi: 10.1146/annurev-vision-091718-015000. Epub 2019 Jul 12.
2018
Junker M, Endres D, Sun ZP, Dicke PW, Giese M, Thier P (2018) Learning from the past: a memory trace of errors in the cerebellar climbing fiber signal. PloS Biology 16(8):e2004344. doi: 10.1371/journal.pbio.2004344. eCollection 2018 Aug.
Markanday A, Messner J, Thier P (2018) Motivation signals help the cerebellum to prevent future motor errors. European Journal of Neuroscience 48(4):1976-1989. doi: 10.1111/ejn.14062.
Spivak O, Thier P, Barash S (2018) Monkeys use the rod?dense retinal region rather than the fovea to visually fixate small targets in scotopic vision. BioRxiv, doi:http://dx.doi.org/10.1101/290759
2017
Höller-Wallscheid MS, Thier P, Pomper JK, Lindner A (2017) Bilateral recruitment of prefrontal cortex in working memory is associated with task demand but not with age. Proceedings of the National Academy of Sciences USA, doi:10.1073/pnas.1601983114 [Epub ahead of print].
Marquardt K, Ramezanpour H, Dicke PW, Thier P (2017) Following eye gaze activates a patch in the posterior temporal cortex that is not part of the human "face patch" system. eNeuro, DOI: 10.1523/ENEURO.0317-16.2017
Sun Z-P, Smilgin A, Junker M, Dicke PW, Thier P (2017) The same oculomotor vermal Purkinje cells encode the very different kinematics of saccades and of smooth pursuit eye movements. Scientific Reports 7:40613. doi: 10.1038/srep40613.
2016
Caggiano V, Fleischer F, Pomper JK, Giese MA, Thier P (2016) Mirror neurons in monkey premotor area f5 show tuning for critical features of visual causality perception. Current Biology 26(22):3077-3082. doi: 10.1016/j.cub.2016.10.007.
Hong S, Negrello M, Junker M, Smilgin A, Thier P, De Schutter E (2016) Multiplexed coding by cerebellar Purkinje neurons. eLife, doi: 10.7554/eLife.13810.
Khazali M, Pomper J, Smilgin A, Bunjes F, Thier P (2016) A new motor synergy that serves the needs of oculomotor and eye lid systems while keeping the downtime of vision minimal. eLife 5:e16290.
Roth MJ, Lindner A, Thier P (2016) Visual circuits. In: Essentials of Cerebellum and Cerebellar Disorders. Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y (eds), Berlin-Heidelberg, pp. 89-100.
Sun Z-P, Barash S, Thier P (2016) The role of the cerebellum in optimizing saccades. In: The Neuronal Codes of the Cerebellum. Heck D (ed), Elsevier Science Publishers, pp 173-196.
Sun Z-P, Junker M, Dicke PW, Thier P (2016) Individual neurons in the caudal fastigial oculomotor region convey information on both macro- and microsaccades. European Journal of Neuroscience 44(8):2531-2542, doi: 10.1111/ejn.13289. [Epub ahead of print].
Wilke C, Pomper JK, Biskup S, Puskás C, Berg D, Synofzik M (2016) Atypical parkinsonism in C9orf72 expansions: a case report and systematic review of 45 cases from the literature. J Neurol 263(3):558-574. doi: 10.1007/s00415-016-8021-7.
2015
Arnstein D, Dicke PW, Junker MA, Smilgin A, Thier P (2015) Microsaccade control signals in the cerebellum. Journal of Neuroscience 35(8):3403-11. doi: 10.1523/JNEUROSCI.2458-14.2015.
Atabaki A, Marciniak K, Dicke PW, Thier P (2015) Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting. Vision Research 112:68-82
Caggiano V, Giese M, Thier P, Casile A (2015) Encoding of point of view during action observation in the Local Field Potentials of macaque area F5. European Journal of Neuroscience 41(4):466-476.
Chen C-Y, Ignashchenkova A, Thier P, Hafed Z (2015) Neuronal Response Gain Enhancement prior to Microsaccades . Current Biology 25(16): 2065-2074
Marciniak K, Dicke PW, Thier P (2015) Monkeys’ head gaze following is fast, precise and not fully suppressible. Proceedings of the Royal Society B 282:20151020
Pomper JK, Arnstein D, Caggiano C, Giese M, Thier P (2015) New properties of F5 mirror neurons and their implications for response selection. In: New Frontiers in Mirror Neurons Research. Ferrari PF, Rizzolatti G (eds), Oxford University Press, pp. 39-57.
Srulijes K, Mack DJ, Klenk J, Schwickert L, Ihlen EA, Schwenk M, Lindemann U, Meyer M, K CS, Hobert MA, Brockmann K, Wurster I, Pomper JK, Synofzik M, Schneider E, Ilg U, Berg D, Maetzler W, Becker C (2015) Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: protocol of a one-year prospective follow-up study. BMC Neurology 15(1):192.
Warnaar P, Couto J, Negrello M, Junker M, Smilgin A, Gigliano M, Thier P, De Schutter E (2015) Complex spike waveforms in the awake monkey are determined by the interval tot he previous complex spike. Frontiers in Cellular Neuroscience 9:122
2014
Atabaki A, Marciniak K, Dicke PW, Karnath H-O, Thier P (2014) Parietal BOLD response evoked by covert visual search reflects set-size effect in monkeys. European Journal of Neuroscience 39:832-840
Caggiano V, Giese M, Thier P, Casile A (2014) Encoding of point of view during action observation in the Local Field Potentials of macaque area F5. European Journal of Neuroscience; doi: 10.1111/ejn.12793. [Epub ahead of print]
Daddaoua N, Dicke PW, Thier P (2014) Eye position information is used to compensate the consequences of ocular torsion on V1 receptive fields. Nature Communications 5:3047. doi: 10.1038/ncomms4047
Dash S, Thier P (2014) Cerebellum-dependent motor learning: lessons from adaptation of eye movements in primates. Progress in Brain Research 210:121-55
Marciniak K, Atabaki A, Dicke PW, Thier P (2014) Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus. Elife; e03222. doi: 10.7554/eLife.03222
Spivak O, Thier P, Barash S (2014) Persistence of the dark-background-contingent gaze upshift during visual fixations of rhesus monkeys. Journal of Neurophysiology 112(8):1999-2005. doi: 10.1152/jn.00666.2013
2013
Atabaki A, Dicke PW, Karnath HO, Thier P (2013) The dependencies of fronto-parietal BOLD responses evoked by covert visual search suggest eye-centred coding. Eur J Neurosci 37(8):1320-1329.
Caggiano V, Pomper J, Fleischer F, Fogassi L, Giese MA, Thier P (2013) Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nat Commun 4:1433.
Dash S, Dicke PW, Thier P (2013) A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation. Frontiers in Systems Neuroscience 7, 3:1-14. doi: 10.3389/fnsys.2013.00003
Dash S, Thier P (2013) Smooth pursuit adaptation (SPA) exhibits features useful to compensate changes in the properties of the smooth pursuit eye movement system due to usage, Frontiers in Systems Neuroscience. doi: 10.3389/fnsys.2013.00067
Fleischer F, Caggiano V, Thier P, Giese MA (2013) Physiologically inspired model for the visual recognition of transitive hand actions. J Neurosci 15(33):6563-6580
2012
Albert MV, Catz N, Thier P, Kording K (2012) Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function. Front Comput Neurosci 6:96:1-7. doi: 10.3389/fncom.2012.00096
Büchel C, Karnath H-O, Thier P (2012) Methoden der kognitiven Neurowissenschaften. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 9-32
Caggiano V, Fogassi L, Rizzolatti G, Casile A, Giese MA, Thier P (2012) Mirror neurons encode the subjective value of an observed action. PNAS 109(29):11848-11853.
Dash S, Catz N, Dicke PW, Thier P (2012) Encoding of smooth-pursuit eye movement initiation by a population of vermal purkinje cells. Cerebral Cortex 22(4):877-891
Fleischer F, Christensen A, Caggiano V, Thier P, Giese MA (2012) Neural theory for the perception of causal actions. Psychological Research 76:476-493
Ilg U, Thier P (2012) Neuronale Grundlagen visueller Wahrnehmung. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 35-43
Ilg U, Thier P (2012) Zielgerichtete Augenbewegungen. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 377-388
Karnath H-O, Thier P (2012) Kognitive Neurowissenschaften. 3. Auflage, Springer Verlag Berlin-Heidelberg.
Sultan F, Augath M, Hamodeh S, Murayama Y, Oeltermann A, Rauch A, Thier P. (2012) Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal networks. Nat Commun. 3:924 (DOI: 10.3410/f.717959329.793462732)
Thier P (2012) Anatomie und Physiologie des parietalen Kortex. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 225-240
Thier P (2012) Grundlagen zielgerichteter Motorik. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 355-365
Thier P (2012) Die funktionelle Architektur des präfrontalen Kortex. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 575-583
Thier P (2012) Kleinhirn und visuelle Wahrnehmung. In: Kognitive Neurowissenschaften. Karnath H-O, Thier P (eds). Springer Verlag Berlin-Heidelberg, 619-623
Tziridis K, Dicke PW, Thier P (2012) Pontine reference frames for the sensory guidance of movement. Cerebral Cortex 22(2):345-362
2011
Caggiano V, Fogassi L, Rizzolatti G, Pomper JK, Thier P, Giese MA*, Casile A*(*equal contribution) (2011) View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Curr Biol. 21(2):144 -148.
Daddaoua N, Dicke PW, Thier P (2011) Non-human primates exhibit disconjugate ocular counterroll to head roll tilts. Vision Research 51:1986-1993.
Dash S, Catz N, Dicke PW, Thier P (2011) Encoding of smooth-pursuit eye movement initiation by a population of vermal purkinje cells. Cerebral Cortex. [Epub ahead of print]. doi: 10.1093/cercor/bhr153
Laube I, Kamphuis S, Dicke PW, Thier P (2011). Cortical processing of head- and eye-gaze cues guiding joint social attention. Neuroimage 54(2):1643-1653. DOI 10.1016/j.neuroimage.2010.08.074
Prsa M, Thier P (2011) The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. Eur J Neurosci 33:2114-2128.
Thier P (2011) The oculomotor cerebellum. In: Oxford University Press Handbook of Eye Movements. Oxford University Press, 173-193.
Tziridis K, Dicke PW, Thier P (2011) Pontine reference frames for the sensory guidance of movement. Cerebral Cortex. [Epub ahead of print]. doi: 10.1093/cercor/bhr109
2010
Dash S, Catz N, Dicke PW, Thier P (2010) Specific vermal complex spike responseses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res 205:41-55
Prsa M, Dicke PW, Thier P (2010) The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. J. Neuroscience 30:15834-15842.
Synofzik M, Thier P, Leube DT, Schlotterbeck P, Lindner A (2010) Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one’s actions. Brain 133:262-271. doi:10.1093/brain/awp291
Zrenner C, Eytan D, Wallach A, Thier P, Marom S (2010) A generic framework for real-time multi-channel neuronal signal analysis, telemetry control, and sub-millisecond latency feedback generation. Frontiers in Neuroscience 4:173-184
2009
Caggiano V, Fogassi L, Rizzolatti G, Thier P, Casile A. Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science 2009;324:403-406
Dash S, Dicke PW, Chakraborty S, Haarmeier T, Thier P. Demonstration of an eye movement induced visual motion illusion (Filehne illusion) in Rhesus monkeys. J Vision 2009. In press.
Fleischer F, Casile A, Giese MA. Physiologically-inspired model for the visual tuning properties of mirror neurons. Proceedings of the 2008 International Conference on Cognitive Systems, University of Karlsruhe, Karlsruhe, Germany, April 2-4, 2008, Springer-Verlag 2009. In press.
Ilg UJ, Thier P. The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain & Cognition 2009; doi:10.1016/j.bandc.2008.08.014
2008
Bock S, Dicke PW, Thier P. How precise is gaze following in humans? Vision Res 2008;48:946-957
Catz N, Dicke PW, Thier P. Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. PNAS 2008;105(20):7309-7314
Daddaoua N, Dicke PW, Thier P. The subjective visual vertical in a nonhuman primate. Journal of Vision 2008;8(3):19, 1-8, journalofvision.org/8/3/19/, doi:10.1167/8.3.19.
Dicke PW, Chakraborty S, Thier P. Neuronal correlates of perceptual stability during eye movements. Europ J Neurosci 2008;27:991-1002
Fleischer F, Casile A, Giese MA. Neural Model for the Visual Recognition of Goal-directed Movements. In: Kurkova V, Neruda R, Koutnik J (eds.). ICANN 2008, Part II, LNCS 5164, pp 939-948
Händel B, Lutzenberger W, Thier P, Haarmeier T. Selective attention increases the dependency of neuromagnetic responses on visual motion coherence. Cerebral Cortex 2008;18:2902-2908
Ilg UJ, Thier P. The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain and Cognition 2008;68:229-240
Materna S, Dicke PW, Thier P. Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: an fMRI study. J Cogn Neurosci 2008;20:108-119
Materna S, Dicke PW, Thier P. The posterior superior temporal sulcus is involved in social communication not specific for the eyes. Neuropsychologia 2008;46:2759-2765
2007
Catz N, Thier P. Neural control of saccadic eye movements. Neuro-Ophthalmology, Developments in Ophthalmology 2007;40:52-75
Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, Flash T. Neural representations of kinematic laws of motion: evidence for action-perception coupling. Proc Natl Acad Sci USA 2007;104(51):20582-20587
Graf M, Reitzner B, Corves C, Casile A, Giese MA, Prinz W. Predicting point-light actions in real. Neuroimage 2007;36 Suppl 2:T22-32
Haarmeier T, Thier P. The attentive cerebellum - fact or myth? Cerebellum 2007;6:177-183
Händel B, Lutzenberger W, Thier P, Haarmeier T. Opposite dependencies on visual motion coherence in human area MT+ and early visual cortex. Cerebral Cortex 2007;17:1542-1549.
Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain 2007;130:786-798
Ilg W, Roehrig R, Thier P, Giese MA. Learning-based methods for the analysis of intra-limb coordination and adaptation of locomotor patterns in cerebellar patients. IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 2007, 1090-1095
Maschke M, Jahn K, Thier P. Alkoholfolgekrankheiten. In: Therapie und Verlauf neurologischer Erkrankungen. Brandt T, Dichgans J, Diener HC (eds). 5. Auflage, Kohlhammer, Stuttgart, 2007, 797-817
Thier P, Golla H. Rehabilitation zerebraler Sehstörungen. In: Therapie und Verlauf neurologischer Erkrankungen. Brandt T, Dichgans J, Diener HC (eds). 5. Auflage, Kohlhammer, Stuttgart, 2007, 288-293
Tikhonov A, Händel B, Haarmeier T, Lutzenberger W, Thier P. Gamma oscillations underlying the visual motion aftereffect. Neuroimage 2007;38:708-719
2006
Büchel C, Karnath H-O, Thier P. Methoden der Kognitiven Neurowissenschaften. In: H-O Karnath, P Thier (eds) Neuropsychologie. 2. Auflage. Springer, Heidelberg, 2006, pp 7-29
Casile A, Giese MA. Non-visual motor learning influences the recognition of biological motion. Current Biology 2006;16(1):69-74
Casile A, Rucci M. A theoretical analysis of the influence of fixational instability on the development of thalamo-cortical connectivity. Neural Computation 2006;18:569-590
Haarmeier T, Thier P. The detection of speed changes during pursuit eye movements. Exp Brain Res 2006;170:345-357
Haendel B, Lutzenberger W, Thier P, Haarmeier T. Opposite dependencies on visual motion coherence in human area MT+ and early visual cortex. Cerebral Cortex, advance access published August 28, 2006
Karnath H-O, Thier P (eds) Neuropsychologie. 2. Auflage. Springer-Verlag, Heidelberg, 2006
Lindner A, Haarmeier T, Erb M, Grodd W, Thier P. Cerebro-cerebellar circuits for the perceptual cancellation of eye-movement-induced retinal image motion. J Cogn Neurosci 2006;18(11):1899-1912
Lindner A, Haarmeier T, Thier P. Die inferentielle Natur der Wahrnehmung: Die Bedeutung des Reafferenzprinzips für das Bewegungssehen. Neuroforum 2006;1:160-165
Linnemann C, Schmeh I, Thier P, Schwarz C. Transient change in GABAA receptor subunit mRNA expression in Lurcher cerebellar nuclei during Purkinje cell degeneration. BMC Neuroscience 2006;7: 59
Thier P. Anatomie und Physiologie des parietalen Kortex. In: Karnath H-O, Thier P (eds) Neuropsychologie. 2. Auflage. Springer, Heidelberg, 2006, 161-176
Thier P. Grundlagen zielgerichteter Motorik. In: Karnath H-O, Thier P (eds) Neuropsychologie. 2. Auflage. Springer, Heidelberg, 2006, 275-285
Thier P. Die funktionelle Architektur des präfrontalen Kortex. In: Karnath H-O, Thier P (eds) Neuropsychologie. 2. Auflage. Springer, Heidelberg, 2006, 471-478
Thier P. Visuelle Wahrnehmung. In: Karnath H-O, Thier P (eds) Neuropsychologie. 2. Auflage. Springer, Heidelberg, 2006, 503-511
Thier P, Möck M. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Progr Brain Res 2006;151:293-320
2005
Casile A, Giese MA. Critical features for the recognition of biological motion. Journal of Vision 2005;5:348-360
Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as stabilize motor learning. Curr Biol 2005;15:2179-2189
Golla H, Thier P. Ocular flutter - a sign of brain-stem pathology as rare consequence of cyclosporin A treatment. Neurooptahlmol 2005;29:81-84
Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain 2005;128:1525-1535
Ignashchenkova A, Haarmeier T, Thier P. The role of the superior colliculus in covert shifts of attention. In: Ilg UJ, Bülthoff HH, Mallot H (eds.) Dynamic Perception. Workshop of the GI Section "Computer Vision". Infix, Akademische Verlagsgesellschaft Aka (Berlin) and IOS Press BV (Amsterdam) 2005;95-100.
Lindner A, Thier P, Haarmeier T, Kircher T, Leube D. Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Current Biol; 2005;15:1119-1124
Rucci M, Casile A. Decorrelation of neural activity during fixational eye movements: Possible implications for the refinement of V1 receptive fields. Visual Neuroscience 2005. In press.
Rucci M, Casile A. Fixational instability and natural image statistics: implications for early visual representations, Network 2005;16:121-138
Schwarz C, Horowski A, Möck M, Thier P. Organization of tectopontine fibers within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex. J Comp Neurol 2005;484:283-298
Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Op in Neurobiol 2005;15:645-652
2004
Dicke PW, Barash S, Ilg UJ, Thier P. Single-neuron evidence for a contribution of the dorsal nuclei to both types of goal-directed eye movements, saccades and smooth-pursuit. Eur J Neurosci 2004;19:609-624
Golla H, Ignashchenkova A, Haarmeier T, Thier P. Improvement of visual acuity by spatial cueing in human and non-human primates. Vision Res 2004;44:1589-1600
Ignashchenkova A, Dicke PW, Haarmeier T, Thier P. Neuron specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 2004;7:56-64
Ignashchenkova A, Haarmeier T, Thier P. The role of the superior colliculus in covert shifts of attention. In: Ilg UJ, Bülthoff H, Mallot H (eds). Dynamic Perception. AKA Akad. Verlag, Berlin, 2004;95-100
Ilg UJ, Schumann S, Thier P. Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 2004;43:145-151
Linnemann C, Sultan F, Pedroarena CM, Schwarz C, Thier P. Lurcher mice exhibit potentiation of GABAA-receptor-mediated conductance in cerebellar nuclei neurons in close temporal relationship to Purkinje cell death. J Neurophysiol 2004;91:1102-1107
Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W. Neuromagnetic acitivity in medial parieto-occipital cortex reflects the perception of visual motion during eye movements. Neuroimage 2004;21:593-600
2003
Casile A, Giese M. Roles of motion and form in biological motion recognition. In: Kaynak O, Alpaydin E, Oja E, Xu L (eds.) Artifical Networks and Neural Information Processing. Lecture Notes in Computer Science 2714, 2003;854-862
Ilg UJ, Thier P. Visual tracking neurons in primate area MST are activated during smooth pursuit eye movements towards an "imaginary" target. J Neurophysiol 2003;90:1489-1502
Ilg U, Thier P. Zielgerichtete Augenbewegungen. In: Karnath H-O, Thier P (eds.). Neuropsychologie. Springer-Verlag, Heidelberg, 2003;311-324
Sultan F, Czubayko U, Thier P. Morphological classification of the rat cerebellar nuclei neurons by principal component analysis. J Comp Neurol 2003;455:139-155
Thier P. Die funktionelle Architektur des präfrontalen Kortex. In: Karnath H-O, Thier P (eds.). Neuropsychologie. Springer-Verlag, Heidelberg, 2003;495-504
Thier P. Grundlagen zielgerichteter Motorik. In: Karnath H-O, Thier P (eds.). Neuropsychologie. Springer-Verlag, Heidelberg, 2003;285-298.
Thier P. Visuelle Wahrnehmung. In: Karnath H-O, Thier P (eds.). Neuropsychologie. Springer-Verlag, Heidelberg, 2003;531-540
2002
Möck M, Schwarz C, Thier P (2002) Serotonergic control of cerebellar mossy fiber activity by modulation of signal transfer by rat pontine nuclei neurons. Journal of Neurophysiology 88: 549-564
Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. Journal of Comparative Neurology 452: 311-323
Thier P, Haarmeier T, Ignashchenkova A (2002) The functional architecture of attention. Current Biology 12: 158-162
Thier P, Dicke PW, Haas R, Thielert C-D, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Ann NY Acad Sci 978: 50-62
Thier P, Haarmeier T, Chakraborty S, Lindner A, Tikhonov A (2002) Cortical substrates of visuospatial awareness outside the classical dorsal stream of visual processing. In: Cognitive and Neural Bases of Spatial Neglect. Karnath, H.-O. et al. (Eds.) Oxford University Press, pp 71-84
2001
Czubayko U, Sultan F, Thier P, Schwarz C (2001). Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. Journal of Neurophysiology 85: 2017-2029
Haarmeier T, Bunjes F, Lindner A, Berret E, Thier P (2001). Optimizing visual motion perception during eye movements. Neuron 32: 527-535
Li W, Thier P, Wehrhahn C (2001) Direct responses from beyond the classical receptive field in V1 of alert monkeys. Experimental Brain Research 139: 359-371
Thier P, Haarmeier T, Chakraborty S, Lindner A, Tikhonov A (2001). Cortical substrates of perceptual stability during eye movements. NeuroImage 14: S33-S39
2000
Haarmeier T, Thier P (2000). Langsame Augenfolgebewegungen und optokinetischer Reflex. Klin Neurophysiol 31: 224-232
Li W, Thier P, Wehrhahn C (2000) Contextual influence on orientiation discrimination of humans and responses of neurons in V1 of alert monkeys. J Neurophysiol 83: 941-954
Salinas E, Thier P (2000) Gain modulation – a major computational principle of the central nervous system. Neuron 27: 15-21
Schwarz C, Thier P (2000) Binding of signals relevant for action. Towards a hypothesis of the functional role of the pontine nuclei. Reply to Bjaalie and Leergard. Trends in Neuroscience 23: 152-153
Sultan F, Möck M, Thier P (2000) Functional architecture of the cerebellar system. In: Neurological Ataxia (ed. Klockgether, T.), Marcel Dekker, New York, 1-52
Thier P, Dicke PW, Haas R, Barash S (2000) Encoding of movement time by populations of cerebellar Purkinje cells. Nature 405: 72-76
Thier P (2000) Ataxia due to acquired vitamin deficiency or metabolic disorder. In: Neurological Ataxia (ed. Klockgether, T.), Marcel Dekker, New York, 633-648
- Prof. Dr. Shabtai Barash (Weizmann Institute of Science, Rehovot, Israel)
- Prof. Dr. Tadashi Isa (National Institute for Physiological Sciences, Okasaki, Japan)
- Prof. Dr. Erik de Schutter (Okinawa Institute of science and Technology, Okinawa, Japan)
- Prof. Dr. Reza Shadmehr (Johns Hopkins University, Baltimore, USA)
Hertie Center of Neurology
Hertie Institute for Clinical Brain Research
Otfried-Müller-Straße 27
72076 Tübingen
Phone: +49 (0)7071 29-83057
Fax: +49 (0)7071 29-5326
Dr. Peter Dicke
Otfried-Müller-Straße 27
Phone: +49 (0)7071 29-81936
Fax: +49 (0)7071 29-5724
dickeuni-tuebingen.de